Models of ice melting and edifice growth at the onset of subglacial basaltic eruptions

نویسنده

  • Hugh Tuffen
چکیده

[1] Models of the early stages of basaltic eruptions beneath temperate glaciers are presented that consider the evolving sizes of volcanic edifices emplaced within subglacial cavities. The cavity size reflects the competing effects of enlargement by melting and closure by downward ductile deformation of the ice roof, which occurs when the cavity pressure is less than glaciostatic due to meltwater drainage. Eruptions of basaltic magma from fissures and point sources are considered, which form either hemicylindrical or hemispherical cavities. The rate of roof closure can therefore be estimated using Nye’s law. The cavity size, edifice size, and depth of meltwater above the edifice are predicted by the model and are used to identify two potential eruption mechanisms: explosive and intrusive. When the cavity is considerably larger than the edifice, hydroclastic fragmentation is possible via explosive eruptions, with deposition of tephra by eruptionfed aqueous density currents. When the edifice completely fills the cavity, rising magma is likely to quench within waterlogged tephra in a predominantly intrusive manner. The models were run for a range of magma discharge rates, ice thicknesses and cavity pressures relevant to subglacial volcanism in Iceland. Explosive eruptions occur at high magma discharge rates, when there is insufficient time for significant roof closure. The models correctly predict the style of historic and Pleistocene subglacial fissure eruptions in Iceland and are used to explain the contrasting sedimentology of basaltic and rhyolitic tuyas. The models also point to new ways of unraveling the complex coupling between eruption mechanisms and glacier response during subglacial eruptions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Heat transfer in volcano–ice interactions on Mars: synthesis of environments and implications for processes and landforms

We review new advances in volcano–ice interactions on Mars and focus additional attention on (1) recent analyses of the mechanisms of penetration of the cryosphere by dikes and sills; (2) documentation of the glacial origin of huge fan-shaped deposits on the northwest margins of the Tharis Montes and evidence for abundant volcano–ice interactions during the later Amazonian period of volcanic ed...

متن کامل

Jökulhlaups in Iceland : sources, release and drainage

Jökulhlaups in Iceland may originate from marginal or subglacial sources of water melted by atmospheric processes, permanent geothermal heat or volcanic eruptions. Glacier-volcano interactions produce meltwater that either drains toward the glacier margin or accumulates in subglacial lakes. Accumulated meltwater drains periodically in jökulhlaups from the subglacial lakes and occasionally durin...

متن کامل

Heat transfer in volcano–ice interactions on Earth

The very high temperature contrast between magma/lava and water ice commonly leads to the assumption that significant melting will take place immediately upon magma/lava ice contact, yet observations of active flows show little evidence of voluminous melting upon contact. We use analytical thermal models to reassess the efficiency with which heat can be transferred from magma to ice in three si...

متن کامل

Cauldron subsidence and subglacial floods

Ice cauldrons are depressions which form at the surface of ice sheets when an underlying subglacial lake empties. Notable examples of such cauldrons occur on the surface of the Vatnajökull ice cap in Iceland, and in particular are formed when subglacial volcanic eruptions occur. More generally, cauldrons will form when a subglacial lake empties during a jökulhlaup. The rate of subsidence of the...

متن کامل

Magma degassing during subglacial eruptions and its use to reconstruct palaeo-ice thicknesses

15 16 The degassing of magmatic volatiles during eruptions beneath ice sheets and glaciers, 17 as recorded by the dissolved volatile content quenched in volcanic rocks, could 18 provide powerful new constraints on former ice thicknesses in volcanic areas. As 19 volcanic rocks are readily dateable using radiometric methods, subglacial volcanoes 20 may therefore provide crucial information on the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007